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Backgrounds on Data Augmentation
• Why data augmentation is important for machine learning?
• Provides more training data.
• Reduce overfitting.
• Improves generalization.
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Background on Graph Neural Networks
• Given: graph                   , node features                           .
• Learn: low dimensional node representations                          . 

• Neighborhood aggregation: generate node representations 
based on local neighborhoods. 
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Data Augmentation for GNNs

• Goal: use graph data augmentation to improve the 
performance of GNNs on the task of node classification.

• Challenges:
• There’s no direct analogs of traditional data augmentation operations 

(flipping, rotating, blurring, etc.) on graphs.
• Very limited operations exist for perturbing graphs.

• Any manipulation would affect the whole graph (dataset).
• Adding/removing edges are the best strategy available.
• But which edges to add/remove?
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Manipulating Edges to Augment Graph Data

• For node classification task,
• There could be noise edges generated by spammers, anomalies, 

adversarial attacks, etc.

• Adding(removing) intra(inter)-class edges improves node 
classification performance.
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Zackary's Karate Club (ZKC) Graph
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Original graph.
GCN Performance: 92.4

Omniscient modified graph.
GCN Performance: 98.6



Random Initialized Features of ZKC Graph
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Random initialized features



Embeddings of ZKC Graph after GCN Layer
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Random initialized features Original Graph



Embeddings of ZKC Graph after GCN Layer
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Random initialized features Original Graph

Modified Graph



Embeddings of ZKC Graph after GCN Layer
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Random initialized features Original Graph

Modified Graph Ideal Graph



Evaluating on Modified or Original Graph 

• How traditional data augmentation methods in CV works:
• Generate augmented data variants for each data object.
• Train model with both original and augmented data.

• On graphs: augmentation results with a new graph.
• Training & inference on different graphs  train-test gap.
• For real-life social networks that are consistently growing/changing, 

ability of inferencing with original graph is preferred.
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GAug-M
1. Use an edge predictor to 

predict edge probabilities for 
all node pairs.

2. Based on the edge 
probabilities, deterministically 
add (remove) new (existing) 
edges to create a modified 
graph.
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GAug-O for Evaluating on Original Graph
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Results



Results
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Thank you!
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Any Questions?


